Publications

Please find a selection of publications from Immudex' customers organized according to the Dextramer® product used and the research area of interest:

 

MHC Dextramer® Reagents

Cancer

  1. Gaißler, A. et al. Dynamics of Melanoma-Associated Epitope-Specific CD8+ T Cells in the Blood. Frontiers in Immunology. 2022;13

  2. Zeller. T. et al. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Frontiers in Immunology. 2022; 13(1): 929339

  3. Besson, S. et al. Stimulation of the immune system by a tumor antigen bearing adenovirus-inspired VLP allows the control of melanoma growth. Molecular Therapy - Methods & Clinical Development - Pre-Proof. 2022;28(1): 76-89. 

  4. Vardeu, A. et al. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022; 10:e005398

  5. Bae, J. et al. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature - Cell biology. 2022;24(12): 1754-1765

  6. Friedmann, K. et al. Interdependence of sequential cytotoxic T lymphocyte and natural killer cell cytotoxicity against melanoma cells. The Journal of Physiology. 2022;600(23): 5027-5054

  7. Chen, Z. et al. An mRNA vaccine elicits STING-dependent antitumor immune responses. ScienceDirect. 2022;21(18): 6582.

  8. Vazquez-Lombardi, R. et al. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. ScienceDirect. 2022;55(10):1953-1966

  9. Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature. 2022;610(161-172).

  10. Immisch, L. et al. H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2+ patients with diffuse midline glioma. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022;10:e005535

  11. Saini, S. et al. Neoantigen reactive T cells correlate with the low mutational burden in hematological malignancies. Nature - Leukemia. 2022;36(1): 2734-2738.

  12. Cho, K. et al. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. MDPI - Review. 2022; 14(12): 2752.

  13. Yong, J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Science Immunology. 2022;7(74).

  14. Noordam, L. et al. Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncoimmunology. 2022;11(1):e2131096-2

  15. Mey, W. et al. A synthetic DNA template for fast manufacturing of versatile single epitope mRNA. Molecular Therapy - Nucleic Acids. 2022;29(943-954).

  16. D’alise, A. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Science Translational Medicine. Science Translational Medicine. 2022;14(657).

  17. Magen A, et al. Intratumoral mregDC and CXCL13 T helper niches enable local differentiation of CD8 T cells following PD-1 blockade. bioRxiv. 2022; 1(1-52)

  18. Johnson DT, et al. Acute myeloid leukemia cell membrane-coated nanoparticles for cancer vaccination immunotherapy. Leukemia. 2021;1(1-12)

  19. Sugata K, et al. Affinity-matured HLA class II dimers for robust staining of antigen-specific CD4+ T cells. Nature Biotechnology, 2021;39(958-967)

  20. Darrigrand R, et al. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Communications Biology, 2021;4(269)

  21. Zappasodi R, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021;591(652–658)

  22. Smith C, et al. Complete response to PD-1 blockade following EBV-specific T-cell therapy in metastatic nasopharyngeal carcinoma, npj Precision Oncology, 2021;5(24)

  23. Geuijen C, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nature Communications, 2021;12(4445)

  24. Dixon KO, et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature, 2020;595,(101–106)

  25. Oh SA, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature Cancer, 2020;1(681–691)

  26. Ni Q, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer.  Science advances, 2020;6(12):1-12

  27. Vazquez-Lombardi R, et al. CRISPR-targeted display of functional T cell receptors enables engineering of enhanced specificity and prediction of cross-reactivity. bioRxiv, 2020;1(1):1-28

  28. Hodge K, et al. Recent developments in neoantigen-based cancer vaccines. Asian Pacific Journal of Allergy and Immunology, 2020;38(1):91-101

  29. Hughes E, et al. Primary breast tumours but not lung metastases induce protective anti-tumour immune responses after Treg-depletion. Cancer immunology, immunotherapy: CII,2020; 69(10):2063–2073.

  30. Roy DC, et al. ATIR101 administered after T-cell-depleted haploidentical HSCT reduces NRM and improves overall survival in acute leukemia. Leukemia, 2020;34(1907–1923)

  31. Lauder SN, et al. Enhanced antitumor immunity through sequential targeting of PI3Kδ and LAG3. Journal for ImmunoTherapy of Cancer,  2020;8(1):e000693.

  32. Merhi M, et al. Persistent anti-NY-ESO-1-specific T cells and expression of differential biomarkers in a patient with metastatic gastric cancer benefiting from combined radioimmunotherapy treatment: a case report. Journal for Immunotherapy of Cancer, 2020;8(e001278)

  33. Matsushita M, et al. Characteristics of a Novel Target Antigen Against Myeloma Cells for Immunotherapy. Vaccines, 2020;8(4):579

  34. Lynn GM, et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320-332.

  35. Capietto AH, et al. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med. 2020;217(4):e20190179.

  36. Gemta LF, et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci Immunol. 2019;4(31):eaap9520.

  37. Leclerc M, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nature Communications, 2019;10(3345)

  38. Noviello M, et al. Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nature Communications, 2019;10(1065)

  39. Wickström SL, et al. Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in immunology, 2019;10(2766)

  40. Johnston RJ, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature, 2019;574(565–570)

  41. Kerdidani D, et al. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nature Communications, 2019;10(1405)

  42. Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.

  43. Wang J, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nature Medicine, 2019;25(656-666)

  44. Viborg N, et al. T cell recognition of novel shared breast cancer antigens is frequently observed in peripheral blood of breast cancer patients. Oncoimmunology, 2019;8(12):1663107.

  45. Moerk SJ, et al. Pilot study on the feasibility, safety and immunogenicity of a personalized neoantigen-targeted immunotherapy (NeoPepVac) in combination with anti-PD-1 or anti-PD-L1 in advanced solid tumors. Annals of Oncology, 2019;30(11):41

  46. Sartorius R, et al. Vectorized Delivery of Alpha-GalactosylCeramide and Tumor Antigen on Filamentous Bacteriophage fd Induces Protective Immunity by Enhancing Tumor-Specific T Cell Response. Front Immunol. 2018;9:1496.

  47. Van Hoecke L, et al. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nature Communications, 2018;9(3417)

  48. Kim HD, et al. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8+ T Cells and Features of Hepatocellular Carcinoma. Gastroenterology. 2018;155(6):1936-1950.e17.

  49. Kato T, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. Published 2018 Jan 13. 2018;9(13):11009-11019.

  50. Rius C, et al. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations. J Immunol, 2018;200(7):2263-2279.

  51. Dammeijer F, et al. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol Res. 2017;5(7):535-546.

  52. Matsushita M, et al. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer Journal, 2017;7(e601)

  53. Ichikawa A, et al. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function. Oncology letters, 2017;13(6),4611–4618.

  54. Matsushita M, et al. CXorf48 is a potential therapeutic target for achieving treatment-free remission in CML patients. Blood Cancer J. 2017;7(9):e601.

  55. Fenstermaker RA, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339-1352.

  56. Tran T, et al. A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu-Expressing Tumor in HLA-A2 Transgenic Mice. Clin Cancer Res. 2016;22(16):4133-4144. 

  57. Baer C, et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nature Cell Biology, 2016;18(790-802)

  58. Laoui D, et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016;7(13720)

  59. Kranz L, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016;534(396–401)

  60. Riabov V, et al. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer. Vaccine. 2015;33(41):5386-5395.

  61. Japp AS, et al. Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunol Immunother. 2015;64(11):1487-1494.

  62. Dolton G, et al. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin Exp Immunol. 2014;177(1):47-63. 

  63. Litterman AJ, et al. Profound impairment of adaptive immune responses by alkylating chemotherapy. J Immunol. 2013;190(12):6259-6268.

  64. Osawa R, et al. Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. Journal of biomedicine & biotechnology, 2012;1(848042)

  65. Höchst B, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology. 2012;56(5):1924-1933.

  66. Hillerdal V, et al. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proc Natl Acad Sci U S A. 2012;109(39):15877-15881.

  67. Kollgaard T, et al. Natural T-cell responses against minor histocompatibility antigen (mHag) HY following HLA-matched hematopoietic cell transplantation: what are the requirements for a ‘good’ mHag?. Leukemia,  2008;22(1948–1951)

  68. Sørensen RB, et al. Efficient tumor cell lysis mediated by a Bcl-X(L) specific T cell clone isolated from a breast cancer patient. Cancer Immunol Immunother. 2007;56(4):527-533.

Cell Therapy

  1. Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Nature, 2022.

  2. Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature. 2022;610(161-172).

  3. Vidard, L. et al. 4‐1BB and cytokines trigger human NK, γδ T, and CD8+ T cell proliferation and activation, but are not required for their effector functions. Wiley, 2022;11:e749)

  4. Jæhger DE, et al. Enhancing adoptive CD8 T cell therapy by systemic delivery of tumor associated antigens. Scientific Reports, 2021;11(19794)

  5. Yarmarkovich M, et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature, 2021;599(477–484)

  6. Wang B, et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nature Biomedical Engineering, 2021;5(429-220)

  7. Bunse M, et al. CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells. Nature Communications, 2021;12(240)

  8. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.

  9. de Goeje PL, et al. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Frontiers in Immunology. 2018;9:2034.

  10. Greco R, et al. Immune monitoring in allogeneic hematopoietic stem cell transplant recipients: a survey from the EBMT-CTIWP. Bone Marrow Transplantation, 2018;53(1201–1205)

  11. Mastaglio S, et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood. 2017;130(5):606-618.

  12. Walseng E, et al. A TCR-based Chimeric Antigen Receptor. Scientific Reports, 2017;7(10713)

  13. Squadrito M, et al. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens. Nature Methods, 2018;15(183-186)

  14. Ma Q, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy, 2016;18(985-994)

  15. Sandri S, et al. Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Research, 2016;76(2540-2551)

  16. Yoshikawa T, et al. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy. International Journal of Immunology. 2014;45(5):1847-1856.

  17. Hillerdal V, et al. T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2+ prostate and breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012;109(39)

Immuno-Oncology

  1. Zeller. T. et al. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Frontiers in Immunology. 2022; 13(1): 929339

  2. Gaißler, A. et al. Dynamics of Melanoma-Associated Epitope-Specific CD8+ T Cells in the Blood. Frontiers in Immunology. 2022;13

  3. Immisch, L. et al. H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2+ patients with diffuse midline glioma. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022;10:e005535

  4. Bae, J. et al. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature - Cell biology. 2022;24(12): 1754-1765

  5. Besson, S. et al. Stimulation of the immune system by a tumor antigen bearing adenovirus-inspired VLP allows the control of melanoma growth. Molecular Therapy - Methods & Clinical Development - Pre-Proof. 2022;28(1): 76-89. 

  6. Friedmann, K. et al. Interdependence of sequential cytotoxic T lymphocyte and natural killer cell cytotoxicity against melanoma cells. The Journal of Physiology. 2022;600(23): 5027-5054

  7. Vardeu, A. et al. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022; 10:e005398

  8. Saini, S. et al. Neoantigen reactive T cells correlate with the low mutational burden in hematological malignancies. Nature - Leukemia. 2022;36(1): 2734-2738.

  9. Noordam, L. et al. Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncoimmunology. 2022;11(1):e2131096-2

  10. Yong, J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Science Immunology. 2022;7(74).

  11. D’alise, A. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Science Translational Medicine. Science Translational Medicine. 2022;14(657).

Melanoma

  1. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;10.1038/s41586-020-2537-9. 

  2. Karlsson J, et al. Molecular profiling of driver events in metastatic uveal melanoma, Nat Commun. 2020; 10.1038/s41467-020-15606-0.

  3. Spindler MJ, et al. Massively parallel interrogation and mining of natively paired human TCRαβ repertoires. Nat Biotechnol. 2020;38(5):609-619.

  4. Santos PM, et al. Impact of checkpoint blockade on cancer vaccine-activated CD8+ T cell responses. J Exp Med. 2020;217(7):e20191369.

  5. Kim KH, et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15 [published online ahead of print, 2020 Apr 24]. Cell Mol Immunol. 2020;10.1038/s41423-020-0427-6. 

  6. Mensali, N. et al. NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 40 (2019) 106–117

  7. Benveniste PM, et al. In vitro-generated MART-1-specific CD8 T cells display a broader T-cell receptor repertoire than ex vivo naïve and tumor-infiltrating lymphocytes. Immunol Cell Biol. 2019;97(4):427-434.

  8. Kwiatkowska-Borowczyk E, et al. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. Published 2018 Aug 24. 2018;7(11):e1509821.

  9. Lutz M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261-272.

  10. Wang S, et al. A novel MHC- dextramer assay to identify melanoma antigen-specific CD8+ T cells from solid tumor disaggregates and matched peripheral blood. J. immunotherapy cancer 3, P109 (2015).

  11. Uzana R, et al. Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones. J Immunol. 2012;188(2):632-640.

  12. Sørensen BR, et al. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56. J Invest Dermatol. 2009;129(8):1992-1999.

  13. Machlenkin A, et al. Capture of tumor cell membranes by trogocytosis facilitates detection and isolation of tumor-specific functional CTLs. Cancer Res. 2008;68(6):2006-2013.

Bacterial Infections

Viral Infection

  1. Cai, C. et al. Identification of human progenitors of exhausted CD8+ T cells associated with elevated IFN-γ response in early phase of viral infection. Nature. 2022; 13(7543). 

  2. Dobson CS, et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nature Methods. 2022;19:449-460

  3. Mold JE, et al. Divergent clonal differentiation trajectories establish CD8+ memory T cell heterogeneity during acute viral infections in humans. Cell Reports. 2021; 35:109174

  4. Lasrado N, et al. Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Scientific Reports, 2021;11(12432)

  5. Leb-Reichl VM, et al. Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. Journal for Immunotherapy of Cancer, 2021;
  6. Minervina AA, et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. Elife. 2020;9:e53704.

  7. Barili V, et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nature Communications, 2020;11(604)

  8. Ambalathingal GR, et al. Proteome-wide analysis of T-cell response to BK polyomavirus in healthy virus carriers and kidney transplant recipients reveals a unique transcriptional and functional profile. Clin Transl Immunology. 2020;9(1):e01102.

  9. Egui A, et al. Differential phenotypic and functional profile of epitope-specific cytotoxic CD8+ T cells in benznidazole-treated chronic asymptomatic Chagas disease patients. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165629.

  10. Tappe D, et al. Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018. Euro Surveill. 2019;24(8):1800483



  11. Myers LM, et al. A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019;10(794)

  12. Kim AR, et al. Herpes Zoster DNA Vaccines with IL-7 and IL-33 Molecular Adjuvants Elicit Protective T Cell Immunity. Immune Netw. 2018;18(5):e38.

  13. Pogorelyy MV, et al. Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. PNAS. 2018; 115(50): 12704–12709

  14. Pedersen NF, et al. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells. Frontiers in Immunology. 2017;8(858):1-12

  15. Schweneker M, et al. Recombinant Modified Vaccinia VirusAnkara Generating Ebola Virus-LikeParticles. Journal of Virology. 2017; 91(11):e00343-17

  16. Ruibal P, et al. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533(7601):100-104.

  17. Bonefeld CM, et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J Immunol. 2008;181(11):7786-7799.

COVID-19

Cytomegalovirus (CMV)

  1. Lu, J. et al. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8+ T cells in healthy human adult. Springer Nature - Immunity & Ageing. 2022; 19(54). 

  2. Tassi, E. et al. Cytomegalovirus-specific T cells restricted for shared and donor human leukocyte antigens differentially impact on Cytomegalovirus reactivation risk after allogeneic-hematopoietic stem cell transplantation. Haematologica. 2022; 280685

  3. Oslund RC, et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nature Chemical Biology. 2022; 1-20

  4. Griessl M, et al. Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell “Memory Inflation” and Avoid Immune Evasion. Frontiers in Immunology. 2021;12(1):668885

  5. van den Berg, S. et al. Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathogens. 2021;17(12):1-27

  6. Chen GL, et al. Low-level Cytomegalovirus Antigenemia Promotes Protective Cytomegalovirus Antigen Specific T-Cells after Allogeneic Hematopoietic Cell Transplantation [published online ahead of print, 2020 Jul 25]. Biol Blood Marrow Transplant. 2020;S1083-8791(20)30457-2. 

  7. Valle-Arroyo J, et al. Lack of cytomegalovirus (CMV)-specific cell-mediated immune response using QuantiFERON-CMV assay in CMV-seropositive healthy volunteers: fact not artifact. Scientific Reports, 2020;10(7194)

  8. Luo XH, et al. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21. Clin Immunol. 2020;217:108456.

  9. Gatault P, et al. CMV-infected kidney grafts drive the expansion of blood-borne CMV-specific T cells restricted by shared class I HLA molecules via presentation on donor cells. Am J Transplant. 2018;18(8):1904-1913.

  10. Emerson R, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nature Genomics, 2017;49(659-665)

  11. Rothe K, et al. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol. 2016;68(2):337-346.

  12. Edvardsen K, et al. Analysis of cellular and humoral immune responses against cytomegalovirus in patients with autoimmune Addison’s disease. J Transl Med. Published 2016 Mar 9. 2016;14:68.

  13. Kato R, et al. Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation. Ann Hematol. 2015;94(10):1707-1715.

Epstein-Barr Virus (EBV)

Hepatitis

  1. Cai, C. et al. Identification of human progenitors of exhausted CD8+ T cells associated with elevated IFN-γ response in early phase of viral infection. Nature. 2022; 13(7543). 

  2. Han JW, et al. IFNL3-adjuvanted HCV DNA vaccine reduces regulatory T cell frequency and increases virus-specific T cell responses. Journal of Hepatology. 2020;73(1):72-83.

  3. Kefalakes H, et al. Hepatitis D Virus-Specific CD8+ T Cells Have a Memory-Like Phenotype Associated With Viral Immune Escape in Patients With Chronic Hepatitis D Virus Infection. Gastroenterology. 2019;156(6):1805-1819.e9.

  4. Pirozyan MR, et al. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis. 2019;219(9):1430-1438.

  5. Otano I, et al. Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Mol Ther. 2018;26(11):2553-2566.

  6. Fisicaro P, et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nature Medicine, 2017;23(327-336)

  7. Martini H, et al. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection. J Infect Dis. 2016;213(4):674-683.

  8. Qasim W, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HbsAg in a liver transplant patient. J Hepatol. 2015;62(2):486-491.

  9. Zabaleta A, et al. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Mol Ther Methods Clin Dev. Published 2015 Mar 11. 2015;2:15006.

  10. Schurich A, et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PloS Pathog. 2013;9(3):e1003208.

Human Immunodeficiency Virus (HIV)

  1. Wallace, Z. et al. Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses. Nature - Scientific reports. 2022; 12(1): 18366.

  2. Perdomo-Celis F, et al. Reprogramming dysfunctional CD8+ T cells to promote properties associated with natural HIV control, Journal of Clinical Investigation. 2022;132(11):e157549

  3. Frey BF, et al. Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. J Immunol. 2018;200(5):1853-1864.

  4. Suzuki H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. 2013;11:97.

  5. Tóth I, et al. Decreased frequency of CD73+CD8+ T cells of HIV-infected patients correlates with immune activation and T cell exhaustion. J Leukoc Biol. 2013;94(4):551-561.

  6. Suzuki H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. Journal of Translational Medicine, 2013;11(97)

  7. Osawa R, et al. Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol. 2012;2012:848042.

  8. Hofmann C, et al. Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood. 2011;118(19):5174-5177.

  9. Lozano JM, et al. Impaired response of HIV type 1-specific CD8(+) cells from antiretroviral-treated patients. AIDS Res Hum Retroviruses. 2007;23(10):1279-1282.

Human Papillomavirus (HPV)

Influenza

Lymphocytic Choriomeningitis Virus (LCMV)

Vaccine Development

  1. Vardeu, A. et al. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022; 10:e005398

  2. Chen, Z. et al. An mRNA vaccine elicits STING-dependent antitumor immune responses. ScienceDirect. 2022;21(18): 6582.
     
  3. Gaißler, A. et al. Dynamics of Melanoma-Associated Epitope-Specific CD8+ T Cells in the Blood. Frontiers in Immunology. 2022;13

  4. Besson, S. et al. Stimulation of the immune system by a tumor antigen bearing adenovirus-inspired VLP allows the control of melanoma growth. Molecular Therapy - Methods & Clinical Development - Pre-Proof. 2022;28(1): 76-89. 

  5. Kurt, F. et al. Booster dose of mRNA vaccine augments waning T cell and antibody responses against SARS-CoV-2. Frontiers in Immunology. 2022; 13:1012526.

  6. Vazquez-Lombardi, R. et al. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. ScienceDirect. 2022;55(10):1953-1966

  7. Noordam, L. et al. Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncoimmunology. 2022;11(1):e2131096-2
     
  8. Mey, W. et al. A synthetic DNA template for fast manufacturing of versatile single epitope mRNA. Molecular Therapy - Nucleic Acids. 2022;29(943-954).
     
  9. D’alise, A. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Science Translational Medicine. Science Translational Medicine. 2022;14(657).

  10. Kaaijk P, et al. Novel mumps virus epitopes reveal robust cytotoxic T cell responses after natural infection but not after vaccination. Scientific Reports, 2021;11(13664)
     
  11. Arbelaez, C.A., et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. npj Vaccines. 2020;5(1):1-14

  12. Stolk, D, et al. Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Frontiers in Immunology. 2020;11(990);1-14

  13. Maynard SK, et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer, 2019;19(540)

  14. Schweneker M, et al. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. Journal of Virology, 2017;91(11)

  15. Speir M, et al. Glycolipid-peptide conjugate vaccines enhance CD8+ T cell responses against human viral proteins. Scientific Reports, 2017;7(14273)

  16. Li B, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. Int J Nanomedicine. Published 2016 Nov 16. 2016;11:6103-6121.

  17. Lazzaro S, et al. CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen-presenting cells and may involve antigen transfer from myocytes. Immunology. 2015;146(2):312-326.

  18. Ambati A, et al. Immunogenicity of virosomal adjuvanted trivalent influenza vaccination in allogeneic stem cell transplant recipients. Transplant Infectious Disease, 2015;17(3):371-379.

  19. Rossi A, et al. Optimization of mucosal responses after intramuscular immunization with integrase defective lentiviral vector. PloS One. 2014;9(9):e107377.

  20. Ohlfest JR, et al. Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol. 2013;190(2):613-620.

  21. Holst PJ, et al. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J Immunol. 2011;186(7):3997-4007.

  22. Baba T, et al. Phase I clinical trial of the vaccination for the patients with metastatic melanoma using gp100-derived epitope peptide restricted to HLA-A*2402. J Transl Med. 2010;8:84.

Autoimmunity

  1. Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Nature, 2022.

  2. Venema, W. et al. Retina-arrestin specific CD8+ T cells are not implicated in HLA-A29-positive birdshot chorioretinitis. Elsevier, 2022;247(1)

  3. Feizi N, et al. CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021;12(1):1026. 

  4. Son ET, et al. The self-peptide repertoire plays a critical role in transplant tolerance induction. The Journal of Clinical Investigations. 2021;131(21):e146771

  5. Haigh O, et al. Genetic Bias, Diversity Indices, Physiochemical Properties and CDR3 Motifs Divide Auto-Reactive from Allo-Reactive T-Cell Repertoires. International Journal of Molecular Sciences, 2021;22(4):1625

  6. Wolf D, et al. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B100-Reactive CD4+ T-Regulatory Cells. Circulation, 2020;142(13):1279-1293.

  7. Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature, 2020;577(399-404)

  8. Eggenhuizen PJ, et al. Treg Enhancing Therapies to Treat Autoimmune Diseases. International Journal of Molecular Sciences, 2020;21(19):7015

  9. Raverdeau M, et al. Retinoic acid-induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity. EMBO Reports, 2019;20(5): e47121

  10. LeMessurier KS, et al. Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Scientific Reports, 2019;9(19360)

  11. Krishnan B, et al. Branched chain α-ketoacid dehydrogenase kinase 111-130, a T cell epitope that induces both autoimmune myocarditis and hepatitis in A/J mice. Immun Inflamm Dis. 2017;5(4):421-434.

  12. Brownlie RJ, et al. Resistance to TGFβ suppression and improved anti-tumor responses in CD8+ T cells lacking PTPN22. Nature Communications, 2017;8(1343)

  13. Henault J, et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nature Immunology, 2016;17(196-203)

  14. Jia T, et al. Association of Autophagy in the Cell Death Mediated by Dihydrotestosterone in Autoreactive T Cells Independent of Antigenic Stimulation [published correction appears in J Neuroimmune Pharmacol. 2016;11(1):227-8]. J Neuroimmune Pharmacol. 2015;10(4):620-634.

  15. Citro A, et al. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. PLoS One. 2015;10(6):e0128607.

  16. Massilamany C, et al. Direct staining with major histocompatibility complex class II dextramers permits detection of antigen-specific, autoreactive CD4 T cells in situ. PLoS One. 2014;9(1):e87519.

  17. Massilamany C, et al. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers. BMC immunology, 2011;12(40):1-14

Diabetes

Transplantation

Reviews

Nanotechnology

  1. Cho, K. et al. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. MDPI - Review. 2022; 14(12): 2752.

  2. Leb-Reichl VM, et al. Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. Journal for Immunotherapy of Cancer, 2021;


  3. Arbelaez, C.A., et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. npj Vaccines. 2020;5(1):1-14

  4. Stolk, D, et al. Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Frontiers in Immunology. 2020;11(990);1-14

  5. Ruiz-de-Angulo A, et al. Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis. Cell Press, 2020;23(9), 101499

  6. Maynard SK, et al. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer, 2019;19(540)

  7. Raverdeau M, et al. Retinoic acid-induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity. Embo Reports, 2019;20(5), e47121

  8. Traini G, et al. Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogen-Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD-L1. Small, 2019;15(4), e1803993

  9. Van der Jeught K, et al. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nanotechnology, 2018;12(10):9815-9829

  10. Schweneker M, et al. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles. Journal of Virology, 2017;91(11)

  11. Zhu G, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2020;8(1482)

  12. Li B, et al. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. International Journal of Nanomedicine, 2016;11(1): 6103–6121

  13. Almeida J, et al. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small, 2015;11(12):1453–1459. 

Parasitic Infections

Clinical Trials

  1. Tassi, E. et al. Cytomegalovirus-specific T cells restricted for shared and donor human leukocyte antigens differentially impact on Cytomegalovirus reactivation risk after allogeneic-hematopoietic stem cell transplantation. Haematologica. 2022; 280685
     
  2. Clifton GT, et al. Results of a Randomized Phase IIb Trial of Nelipepimut-S + Trastuzumab versus Trastuzumab to Prevent Recurrences in Patients with High-Risk HER2 Low-Expressing Breast Cancer. Clin Cancer Res. 2020;26(11):2515-2523.

  3. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory cancer. Science, 2020; 367(6481)

  4. Moerk SK, et al. Pilot study on the feasibility, safety and immunogenicity of a personalized neoantigen-targeted immunotherapy (NeoPepVac) in combination with anti-PD-1 or anti-PD-L1 in advanced solid tumors. Annals of Oncology, 2019;30(1)

  5. La Rosa C, et al. Rapid Acquisition of Cytomegalovirus-Specific T Cells with a Differentiated Phenotype, in Nonviremic Hematopoietic Stem Transplant Recipients Vaccinated with CMVPepVax. Biol Blood Marrow Transplant. 2019;25(4):771-784.

  6. Westdorp H, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019;7(1):302.

  7. Maschan M, et al. Low-dose donor memory T-cell infusion after TCR alpha/beta depleted unrelated and haploidentical transplantation: results of a pilot trial. Bone Marrow Transplantation, 2018;53(264–273)

  8. Obara W, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108(7):1452-1457.

  9. Fenstermaker RA, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer immunology, immunotherapy, 2017;65(11): 1339–1352
  10. Zabaleta A, et al. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. Molecular Therapeutics - Methods and Clinical Development, 2015;2(1): 15006

  11. Okuyama R, et al. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology. 2013;2(11):e27010.

  12. Aruga A, et al. Long-term Vaccination with Multiple Peptides Derived from Cancer-Testis Antigens Can Maintain a Specific T-cell Response and Achieve Disease Stability in Advanced Biliary Tract Cancer. Clin Cancer Res. 2013;19(8):2224-2231.

  13. Suzuki H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. Journal of Translational Medicine, 2013;11(97)

  14. Sawada Y, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686-3696.

Immunotherapy

  1. Wallace, Z. et al. Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses. Nature - Scientific reports. 2022; 12(1): 18366.

  2. Vardeu, A. et al. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022; 10:e005398

  3. Gaißler, A. et al. Dynamics of Melanoma-Associated Epitope-Specific CD8+ T Cells in the Blood. Frontiers in Immunology. 2022;13

  4. Immisch, L. et al. H3.3K27M mutation is not a suitable target for immunotherapy in HLA-A2+ patients with diffuse midline glioma. BMJ Jounals - Journal for ImmunoTherapy of Cancer. 2022;10:e005535

  5. Bae, J. et al. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature - Cell biology. 2022;24(12): 1754-1765

  6. Cho, K. et al. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. MDPI - Review. 2022; 14(12): 2752.

  7. Chen, Z. et al. An mRNA vaccine elicits STING-dependent antitumor immune responses. ScienceDirect. 2022;21(18): 6582.

  8. Friedmann, K. et al. Interdependence of sequential cytotoxic T lymphocyte and natural killer cell cytotoxicity against melanoma cells. The Journal of Physiology. 2022;600(23): 5027-5054

  9. Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature. 2022;610(161-172).

  10. Noordam, L. et al. Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncoimmunology. 2022;11(1):e2131096-2

  11. Zeller. T. et al. Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages. Frontiers in Immunology. 2022; 13(1): 929339

  12. Saini, S. et al. Neoantigen reactive T cells correlate with the low mutational burden in hematological malignancies. Nature - Leukemia. 2022;36(1): 2734-2738.

  13. Vazquez-Lombardi, R. et al. High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. ScienceDirect. 2022;55(10):1953-1966

TCR Discovery

Microscopy

Our Technology

All our products are based on the following technologies:

Dextramer®Technology

dCODE® Technology

Klickmer® Technology

U-Load® Technology

Immudex Citation Guidelines

To cite Immudex® reagents, please use the following guidelines

Klickmer®

References

  1. Tjärnhage, E. et al. Trimeric, APC-Targeted Subunit Vaccines Protect Mice against Seasonal and Pandemic Influenza, J Virol, 2023 Feb 28;97(2):e0169422

  2. Son, E. et al. Screening self-peptides for recognition by mouse alloreactive CD8+ T cells using direct ex vivo multimer staining (Protocol). Science Direct. 2022;4(1):1-18

  3. Wolf D, et al. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B 100-Reactive CD4 + T-Regulatory Cells. Circulation. 2020 Sep 29;142(13):1279-1293.

  4. Greenshields-Watson A, et al. CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Rep. 2020 Jul 14;32(2):107885.
     
  5. Johnston RJ, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature. 2019;574(7779):565-570. 

  6. Dolton G, et al. Optimized Peptide-MHC Multimer Protocols for Detection and Isolation of Autoimmune T-Cells. Front Immunol. Published 2018 Jun 29. 2018;9:1378.

  7. Luque S, et al. A multicolour HLA-specific B-cell FluoroSpot assay to functionally track circulating HLA-specific memory B cells. J Immunol Methods. 2018;462:23-33.

  8. Bentzen AK, et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes [published online ahead of print, 2018 Nov 19]. Nat Biotechnol. 2018;10.1038/nbt.4303.

  9. Chancellor A, et al. CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis mycolic acid meromycolate chains. Proc Natl Acad Sci U S A. 2017;114(51):E10956-E10964.

  10. Massilamany C, et al. Major Histocompatibility Complex Class II Dextramers: New Tools for the Detection of antigen-Specific, CD4 T Cells in Basic and Clinical Research. Scand J Immunol. 2015;82(5):399-408.

  11. Neller MA, et al. Naive CD8⁺ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics. Immunol Cell Biol. 2015;93(7):625-633. 

  12. Lolli F, et al. Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis. J Neuroinflammation. 2013;10:94.

  13. Kasmar AG, et al. Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J Immunol. 2013;191(9):4499-4503.

  14. Yang GB, et al. Immunization with recombinant macaque major histocompatibility complex class I and II and human immunodeficiency virus gp140 inhibits simian-human immunodeficiency virus infection in macaques. J Gen Virol. 2012;93(Pt 7):1506-1518.

  15. Mörner A, et al. Immunization with recombinant HLA classes I and II, HIV-1 gp140, and SIV p27 elicits protection against heterologous SHIV infection in rhesus macaques. J Virol. 2011;85(13):6442-6452.

  16. Wang Y, et al. P19-20. Allogeneic stimulation of the anti-viral APOBEC3G in human CD4+ T cells and prevention of SHIV infectivity in macaques immunized with HLA antigens. Retrovirology. Published 2009 Oct 22. 2009;6(Suppl 3):P340.

dCODE Dextramer® (10X)

References

  1. Magen A, et al. Intratumoral mregDC and CXCL13 T helper niches enable local differentiation of CD8 T cells following PD-1 blockade. bioRxiv. 2022; 1(1-52)

  2. Adamo S, et al. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature. 2022; 602(148–155). 

  3. Montemurro A, et al. NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data. Communications Biology. 2021; 4:1060

  4. Zhang W, et al. A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity. Science Advances. 2021; 14;7(20)
  5. Zhang Z, et al. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nature Methods. 2021; 18(92-99)

  6. Beshnova D, et al. De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Science translational medicine. 2020;12(557)

  7. Fischer DS, et al. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Molecular systems biology. 2020;16(8).

  8. Minervina AA, et al. Comprehensive analysis of antiviral adaptive immunity formation and reactivation down to single-cell level. BioRXiv. 2019;820134

  9. Regeneron presentation, "Multiplexing Oligo-Dextramer to Pair TCR Specificities with Phenotypes" https://www.youtube.com/watch?v=i3qr_0kjkfw&feature=youtu.be&t=1

  10. 10x Genomics Application Note: A new Way of Exploring Immunity

  11. Poster: Simultaneous Single Cell Analysis of Multiple Analytes

  12. Poster: MHC II dCODE Dextramer technology allows characterization of antigen-specificity, TCR clonotype and gene expression of single CD4+ T-cells